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Abstract

A new hand gesture recognition method based on Input–
Output Hidden Markov Models is presented. This method
deals with the dynamic aspects of gestures. Gestures are
extracted from a sequence of video images by tracking the
skin–color blobs corresponding to the hand into a body–
face space centered on the face of the user. Our goal is to
recognize two classes of gestures: deictic and symbolic.

1. Introduction

Persons detection and analysis is a challenging problem
in computer vision for human computer interaction. LIS–
TEN is a real–time computer vision system which detects
and tracks a face in a sequence of video images coming from
a camera. In this system, faces are detected by a modular
neural network in skin color zones [3]. In [5], we devel–
oped a gesture based LISTEN system integratingskin–color
blobs, face detection and hand posture recognition. Hand
postures are detected using neural networks in a body–face
space centered on the face of the user. Our goal is to sup–
ply the system with a gesture recognition kernel in order to
detect the intention of the user to execute a command. This
paper describe a new approach for hand gesture recognition
based on Input–Output Hidden Markov Models.

Input–Output Hidden Markov Models (IOHMM) were
introduced by Bengio and Frasconi [1] for learning prob–
lems involving sequential structured data. They have sim–
ilarities to hidden markov models but allows to map input
sequences to output sequences. Indeed, for many training
problems, the data are of sequential nature and multi–layer
neural networks (MLP) are often not adapted because of
the lack of memory mechanism to retain past information.
Some neural networks models allow to capture the temporal
relations by using times in their connections (Time Delay

Neural Networks) [11]. However, the temporal relations are
fixed a priori by the network architecture and not by the
data themselves which generally have temporal windows of
variable input size.

Recurrent neural networks (RNN) model the dynam–
ics of a system by capturing contextual information from
one observation to another. The supervised training for
RNN is primarily focused on methods of gradient descent:
Back–Propagation Through Time [9], Real Time Recurrent
Learning [13] and Local Feedback Recurrent Learning [7].
However, training with gradient descent is difficult when
the duration of the temporal dependencies is large. Pre–
vious work on alternative training algorithms [2], such as
Input/Output Hidden Markov Models, suggest that the root
of the problem lies in the essentially discrete nature of the
process of storing contextual information for an indefinite
amount of time.

2. Image Processing

We are working on image sequence in CIF format
(384x288 pixels). In such images, we are interested in face
detection and hand gesture recognition. Consequently, we
must segment faces and hands from the image.

2.1. Face and hand segmentation

We filter the image using a fast look–up indexing table of
skin color pixels in YUV color space. After filtering, skin
color pixels (Figure 1) are gathered into blobs [14]. Blobs
(Figure 2) are statistical objects based on the location (x,y)
and the colorimetry (Y,U,V) of the skin color pixels in order
to determine homogeneous areas. A skin color pixel belong
to the blob which have the same location and colorimetry
component.
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2.2. Extracting gestures

We map over the user a body–face space based on a
�discrete space for hand location� [6] centered on the face
of the user as detected by LISTEN. The body–face space
is built using an anthropometric body model expressed as
a function of the total height of the user, itself calculated
from the face height. Blobs are tracked into the body–face
space. The 2D trajectory of the hand–blob1 during a gesture
is called a gesture path.

3. Hand Gesture Recognition

Numerous method for hand gesture recognition have
been proposed: neural networks (NN), such as recurrent
models [8], hidden markov models (HMM)[10] or gesture
eigenspaces [12]. On one hand, HMM allow to closely
compute the probability that observations could be gener–
ated by the model. On the other hand, RNN achieve good
classification performance by capturing the temporal re–
lations from one observation to another. However, they

1center of gravity of the blob corresponding to the hand

cannot compute the likelihood of observation. In this pa–
per, we use IOHMM which have HMM properties and NN
discrimination efficiency.
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Our goal is to recognize two classes of gestures: deic–
tic and symbolic gestures (Figure 3). Deictic gestures are
pointing movements towards the left (right) of the body–face
space and symbolic gestures are intended to execute com–
mands (grasp, clic, rotate) on the left (right) of shoulders.
A video corpus was built using several persons executing
several times these two classes of gestures. A database of
gesture paths was obtained by manual video indexing and
automatic blob tracking.

4. Input–Output Hidden Markov Models

The aim of IOHMM is to propagate, backward in time,
targets in a discrete space of states, rather than the derivatives
of the errors, as in NN. The training is simplified and has
only to learn the outputs and the next state defining the
dynamic behavior.

4.1. Architecture and modeling

The architecture of IOHMM consists of a set of states ? ,
where each state is associated to a state neural network @�A
and to an output neural network B)A where the input vectorC(D is the input at time E . A state network @GF has a number of
outputs equal to the number of states. Each of these outputs
gives the probabilityof transition from state H to a new state.

4.2. Modeling

Let CJI1 K C
1 L>L>L C I be the input sequence (observation

sequence) and M I1 K M 1 L>L>L M I the output sequence.



C is the input vector ( C � IR � ) with � the input vector
size and M is the output vector ( M � IR � ) with � the output
vector size. � is the number of input/output sequences
and � is the length of the observed sequence. The set
of input/output sequences is defined by � K � 	�

��� K� C I��

1

� ����
 M I��1

� ���
�
, with

� K 1 L>L>L � . The IOHMM model is
described as follows:� ? D : state of the model at time E where ? D ��� , � K

1 L>L>L�� and � is the number of states of the model,����� : set of successor states for state � , ���! � ,��" : set of final states, "# � .

The dynamic of the model is defined by :

? D K%$ � ? D�& 1

 C
D �

M D K(' � ? D 
 C
D � (1)) F is the set of parameters of the state network @GF ( *�H K
1 L>L>L�� ), where +-F-, D K I/. 0

1F-, D L>L>L 021 F-, D43 is the output of
the state network @/F at time E , with the relation 05� F-, D K�6� � ? D K �87�? D�& 1 K H 
 C
D � , i.e. the probability of transition
from state H to state � , with 9 1�;: 1

02� F-, D K 1. < F is the set
of parameters of output network B F ( *�H K 1 L>L>L�� ), where= F-, D is the output of the output network B F at time E , with
the relation > � F-, D K �6� �@? � , D 7�? D K H 
 C
D � . Let us introduce
the following variables in the model:��A�D : “ memory” of the system at time E , A�D �CB 1 :

A D K
1D
F : 1

E F-, D�& 1 + F-, D for EGFK 0

where
E F-, D K �6� � ? D K HH7 C D1 � and A 0 is randomly

chosen with 9 1F : 1

E F-, 0 K 1,��=!ID : global output of the system at time E , =8ID � IR� is:

= ID K
1D
F : 1

E F-, D�= F-, D (2)

with the relation =JID K �6� � M D 7 C D1 � , i.e. the probabil–
ity to have the expected output M D knowing the input
sequence C D1,� $LK � M D ; =M� , D � : probabilitydensity function (pdf) of out–
puts where $NK � M D ; =M� , D � K �6� � M D 7�? D K � 
 C
D � , i.e. the
probability to have the expected output M D knowing the
current input vector C D and the current state ? D .

We formulate the problem of the training as a problem
of maximization of the probability function of the set of
parameters of the model on the set of training sequences.
The likelihood of input/output sequences � (Equation 3)

is, as in HMM, the probability that a finite observation
sequence could be generated by the IOHMM.O �

Θ

 � � K �6� �;� 7 	�
 Θ �

K
PQ
R : 1

�6� � M I��1 7 C I��1



Θ
�

(3)

where Θ is the parameter vector given by the concatenation
of SL< F�T et S ) FUT . We introduce the EM algorithm as a
iterative method to estimate the maximum of the likelihood.

4.3. The EM algorithm

The goal of the EM algorithm (Expectation Maximiza–
tion) [4] is to maximize the function of log–likelihood
(Equation 4) on the parameters Θ of the model given the
data � . V �

Θ

 � � K

V
W ' O � Θ 
 � � (4)

To simplify this problem, the EM assumption is to intro–
duce a new set of parameters X known as the hidden set of
parameters. Thus, we obtain a new set of data �ZY K � � 
 X � ,
called the complete set of the data, of log–likelihood func–
tion

V �
Θ

 �GY � . However, this function cannot be maximized

directly because X is unknown. It was already shown
[4] that the iterative estimation of the auxiliary function[

(Equation 5), using the parameters Θ̂ of the previous
iteration, maximizes

V �
Θ

 �6Y � .[ �

Θ



Θ̂
� K]\_^ .

V �
Θ

 �GY � 7`� 
 Θ̂3 (5)

Computing
[

corresponds to supplement the missing
data by using knowledge of the observed data and of the
previous parameters. The EM algorithm is the following:� For a K 1 L>L>L�b , where b is a local maxima

� Estimation step: computation of[ �
Θ


Θ c d & 1 e � Kf\_^ .

V �
Θ

 �GY � 7`� 
 Θ c d & 1 e 3

� Maximization step:
Θ c d e K arg maxΘ

[ �
Θ


Θ c d & 1 e �

Analytical maximization is done by cancelling the partial
derivatives gih c Θ , Θ̂ eg Θ K 0.

4.4. Training IOHMM using EM

Let � be the set of states sequences, � K �;j I��
1

� ���
�
with� K 1 L>L>L � , the complete data set is:

�GY K � 	�
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and the likelihood on �6Y is:O �
Θ

 �GY � K �6� �;�k
 � 7 	�
 Θ �

K
PQ
R : 1

�6� � M I��1

� ����

j I��
1
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�

For convenience, we choose to omit the
�

variable in
order to simplify the notation. Furthermore, the conditional
dependency of the variables of the system (Equation 1) al–
lows us to write the above likelihood as:

O �
Θ

 �GY � K

PQ
R : 1
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D@:

1

�6� � M D 
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 C
D 
 Θ �

Let us introduce the variable ��D
��� , D K

�
1 : ? D K �
0 : ? D FK �

the log–likelihood is then:V �
Θ

 �GY � K

V
W ' O � Θ 
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K
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V
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��� , D�� F-, D�& 1

V
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 C
D 
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However, the set of states sequences � is unknown, and
V �

Θ

 �GY � cannot be maximize directly. The auxiliary func–

tion
[

must be computed (Equation 5):[ �
Θ
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V
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Ê � , D
V
W ' $LK � M D ; = � , D � �

1D
F : 1

�̂ � F-, D
V
W ' 02� F-, D

where �̂ � F-, D is computed using Θ̂ as follows:

� � F-, D K �6� � ? D K � 
 ? D�& 1 K H 7 C I1 
 M I1 �
K � F-, D�& 1

02� F-, D
	 � , D $LK � M D ; = � , D �O
and

O K �6� � M I1 7 CJI1 � , � � , D and 	 � , D are computed (see
[1] for details) using equations (6) and (7).

� � , D K �6� � M D1 
 ? D K �87 C D1 �
K $LK � M D ; = � , D �

1D
F : 1

02� F-, D � F-, D�& 1 (6)

	 � , D K �6� � M ID�� 1 7�? D K � 
 C I D �
K

1D
F : 1

$LK � M D�� 1; = F-, D�� 1

� 	 F-, D�� 1
0 F � , D�� 1 (7)

Then
O

is given by:O K �6� � M I1 7 C I1 �
K

D��
�� �6� � M I1 
 ? I K �87 C I1 � K D��
�� � � , I
The learning algorithm is as follow: for each sequence� CJI
1


 M I1 � and for each state H K 1 L>L>L�� , we compute + F-, D ,= F-, D , then � � , D , 	 � , D and � � F-, D ( * � � � F ). Then we adjust) F parameters of the state networks @GF to maximize the
equation (8). PD

R : 1

I��D
D@:

1

1D �;:
1

1D
F : 1

�̂ � F-, D
V
W ' 02� F-, D (8)

We also adjust < F parameters of the output networks B F
to maximize the equation (9).PD

R : 1

I��D
D@:

1

1D �;:
1

Ê � , D
V
W ' $LK � M D ; = � , D � (9)

Let � F d be the set of parameters of state networks @GF .
The partial derivatives of the equation (8) are given by:

� [ �
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� 02� F-, D� � F d

where the partial derivatives g���� ��� �g�� ��� are computed using clas–
sic back–propagation in the state network @GF .

Let � � d be the set of parameters of output network B � .
The partial derivatives of the equation (9) are given by:

� [ �
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Ê � , D �D F : 1

�
V
W '/$LK � M D ; = � , D �� > F � , D
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As before, partial derivative g�� � � � �g���� � can be computed

by back–propagation in output networks B � . The pdf$LK � M D ; =M� , D � depends on the problem.

4.5. Applying IOHMM to gesture recognition

We want to discriminate a deictic gesture from a symbolic
gesture. Gesture paths are sequences of [∆ D 
 ? D 
 ? D ] obser–
vations, where ?! ,

? D are the coordinate at time E and ∆ D is
the sampling interval. Therefore, the input size is � K 3,
and the output size � K 1. We choose to learn

?
1 K 1 as

output for deictic gestures and
?

1 K 0 as output for symbolic
gestures.



Furthermore, we assume that the pdf of the model is

$LK � M D ; =M� , D � K � & 1
2 9 �� � 1 c  � � �@& � � � � � e 2 , i.e. an exponential

Mean Square Error. Then, partial derivatives of the equation
(9) becomes:

� [ �
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�@? F-, D�� > F � , D � � > F � , D� � � d
Our gesture database (Table 1) is divided into three sub–

sets: the learning set, the validation set and the test set. The
learning set is used for training the IOHMM, the valida–
tion set is used to tune the model and the test set is used
to evaluate the performance. Table 1 indicates in the first
column the number of sequences. The second, third and
fourth columns respectively indicates the minimum number
of observations, the mean number of observations and the
maximum number of observations.

�&��,�! �
	�� 7#�������<� "����  ��� +* ��������������������1����3��,������

Deictic gestures
P � � � 1 � ���
	 1 � ��	 A

Learning set 152 5 13 29
Validation set 76 5 14 29

Test set 57 5 15 28

Symbolic gestures
P � � � 1 � ���
	 1 � ��	 A

Learning set 196 5 17 36
Validation set 98 5 17 36

Test set 99 8 18 37

5. Results

We compare this IOHMM method to another method
based on multi–layer neural networks (MLP) with fixed in–
put size. Since the gesture database contains sequences of
variable duration, sequences are interpolated, before pre–
sentation to the neural network, in order to have the same
number of observations. We choose to interpolate all se–
quences to the mean number of observations � ���
	 1 K 16.
Then, the input vector size is � K 48 for the MLP based on
interpolated gesture paths.

Classification rates on test sets for the MLP based on
interpolated gestures and the IOHMM are presented (Table
2). Classification rate for the IOHMM is determine by
observing the global output =8ID (Equation 2) over the time E
expressed as a percentage of the length of the sequence. The
figure 4 presents, for all sequences of both learning class,
the mean and the standard deviation of the global output.

�&��,�! � %&��� ! �����>� * � �������  ��9�����3� ��� ��� ����������!������ :
�# �� ��� ���>� ���G� ���3���<"� �! ���3��1G����������������
�����1=���������
,���� �#���������

%
����1������

%
 +* ���������������������

Deictic Symbolic
NN using interpolated gestures 98 L 2% 98 L 9%
IOHMM 97 L 6% 98 L 9%
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The IOHMM can discriminate a deictic gesture from a
symbolic gesture using the current observation after 60%
of the sequence is presented. It achieves the best recog–
nition rate between 90% and 100% of the sequence. In
this case, IOHMM give equivalent results to MLP based
on interpolated gestures. Nevertheless, IOHMM are more
advantageous than the MLP used. The temporal window is
not fixed a priori and the input is the current observation
vector [∆ D 
 ? D 
 ? D ].
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Unfortunately, untrained gestures, i.e. the deictic and
symbolic retractation gestures, cannot be classified neither
by the output of the MLP based on interpolated gestures nor
by the global output of the IOHMM (Figure 5).
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Nevertheless, it is possible to estimate for the IOHMM, a
“ likelihood cue” that can be used to stand out trained gestures
from untrained gestures (Figure 6). This “ likelihood cue”
can be computed in a HMM way by adding to each state of
the model an observation probability of the input C-D .

6. Conclusion

A new hand gesture recognition method based on In–
put/Output Hidden Markov Models is presented. IOHMM
deal with the dynamic aspects of gestures. They have Hid–
den Markov Models properties and Neural Networks dis–
crimination efficiency. When trained gestures are encoun–
tered the classification is as powerful as the neural network
used. The IOHMM use the current observation only and
not a temporal windows fixed a priori. Furthermore, when
untrained gestures are encountered, the “ likelihood cue” is
more discriminant than the global output.

Future work is in progress to integrate the hand gesture
recognition based on IOHMM into the LISTEN based sys–
tem. The full system will integrate face detection, hand
posture recognition and hand gesture recognition.
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