Hand Gesture Recognition using
I nput—Output Hidden Markov Models

Sebastien Marcel, Olivier Bernier, Jean—Emmanuel Viallet and Daniel Collobert
France Telecom CNET
2 avenue Pierre Marzin
22307 Lannion, FRANCE
{sebastien.marcel, alivier.bernier, jeanemmanuel .viallet, daniel.collobert} @cnet.francetel ecom.fr

Abstract

A new hand gesture recognition method based on Input—
Output Hidden Markov Models is presented. This method
deals with the dynamic aspects of gestures. Gestures are
extracted from a sequence of video images by tracking the
skin—color blobs corresponding to the hand into a body—
face space centered on the face of the user. Our goal isto
recognize two classes of gestures: deictic and symbolic.

1. Introduction

Persons detection and analysisis a challenging problem
in computer vision for human computer interaction. LI1S-
TEN is a real—time computer vision system which detects
andtracksafacein asequence of videoimages coming from
acamera. In this system, faces are detected by a modular
neura network in skin color zones [3]. In [5], we devel—
oped agesturebased LISTEN system integrating skin—col or
blobs, face detection and hand posture recognition. Hand
postures are detected using neura networksin abody—face
space centered on the face of the user. Our goal isto sup—
ply the system with a gesture recognition kernel in order to
detect theintention of the user to execute acommand. This
paper describe a new approach for hand gesture recognition
based on Input—Output Hidden Markov Models.

Input—Output Hidden Markov Models (IOHMM) were
introduced by Bengio and Frasconi [1] for learning prob—
lems involving sequentia structured data. They have sim—
ilaritiesto hidden markov models but allows to map input
sequences to output sequences. Indeed, for many training
problems, the data are of sequentia nature and multi—layer
neural networks (MLP) are often not adapted because of
the lack of memory mechanism to retain past information.
Some neural networksmodels all ow to capture the temporal
relations by using times in their connections (Time Delay

Neura Networks) [11]. However, thetempord relationsare
fixed a priori by the network architecture and not by the
datathemsel ves which generally have tempora windows of
variableinput size.

Recurrent neural networks (RNN) mode the dynam—
ics of a system by capturing contextual information from
one observation to another. The supervised training for
RNN is primarily focused on methods of gradient descent:
Back—Propagation Through Time [9], Real Time Recurrent
Learning [13] and Local Feedback Recurrent Learning [7].
However, training with gradient descent is difficult when
the duration of the temporal dependencies is large. Pre-
vious work on dternative training algorithms [2], such as
Input/Output Hidden Markov Models, suggest that the root
of the problem liesin the essentially discrete nature of the
process of storing contextual information for an indefinite
amount of time.

2. Image Processing

We are working on image sequence in CIF format
(384x288 pixels). In such images, we are interested in face
detection and hand gesture recognition. Conseguently, we
must segment faces and hands from the image.

2.1. Face and hand segmentation

Wefilter theimage using afast look—up indexing tabl e of
skin color pixelsin YUV color space. After filtering, skin
color pixels (Figure 1) are gathered into blobs [14]. Blobs
(Figure 2) are statistical objects based on the location (x,y)
and the colorimetry (Y,U,V) of theskin color pixelsin order
to determine homogeneous areas. A skin color pixe belong
to the blob which have the same location and colorimetry
component.
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Figure 1. Image with skin color pixels

Figure 2. Example of blobs on the face and the
hand represented by polygons

2.2. Extracting gestures

We map over the user a body—face space based on a
discrete space for hand location [6] centered on the face
of the user as detected by LISTEN. The body—face space
is built using an anthropometric body model expressed as
a function of the total height of the user, itself calculated
from the face height. Blobs are tracked into the body—face
space. The 2D trajectory of the hand—blob* during agesture
is caled a gesture path.

3. Hand Gesture Recognition

Numerous method for hand gesture recognition have
been proposed: neural networks (NN), such as recurrent
models [8], hidden markov models (HMM)[10] or gesture
eigenspaces [12]. On one hand, HMM allow to closely
compute the probability that observations could be gener—
ated by the model. On the other hand, RNN achieve good
classification performance by capturing the temporal re-
lations from one observation to another. However, they

Lcenter of gravity of the blob correspondingto the hand

cannot compute the likelihood of observation. In this pa—
per, we use IOHMM which have HMM propertiesand NN
discrimination efficiency.
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Figure 3. Deictic and Symbolic gesture paths
in the body-face space

Our god is to recognize two classes of gestures. deic—
tic and symbolic gestures (Figure 3). Deictic gestures are
pointing movementstowardsthel eft (right) of thebody—face
space and symbolic gestures are intended to execute com—
mands (grasp, clic, rotate) on the left (right) of shoulders.
A video corpus was built using several persons executing
severa times these two classes of gestures. A database of
gesture paths was obtained by manual video indexing and
automatic blob tracking.

4. Input—Output Hidden Markov Models

The am of IOHMM s to propagate, backward in time,
targetsinadiscretespaceof states, rather thanthederivatives
of the errors, as in NN. The training is simplified and has
only to learn the outputs and the next state defining the
dynamic behavior.

4.1. Architecture and modeling

The architecture of IOHMM consists of a set of states z,
where each state is associated to a state neural network AV,
and to an output neural network O,. where the input vector
u, istheinput at timet. A state network A/; has anumber of
outputsequal to the number of states. Each of these outputs
givesthe probability of transitionfrom state j to anew state.

4.2. Modeling

Let ul = u;y...ur betheinput sequence (observation
sequence) and y7 = y1...yr theoutput sequence.



u istheinput vector (u € IR™) with m the input vector
size and y isthe output vector (y € IR") with » the output
vector size. P is the number of input/output sequences
and 7' is the length of the observed sequence. The set
of input/output sequences is defined by D = (U,Y) =
(ui?(p),y:7(p)), withp = 1... P. TheIOHMM mode is
described as follows:

e 1, . state of the modd at timet wherez;, € X', X =
1...n and n isthe number of states of the mode!,

e S; : set of successor states for state 7, S; C A,
e F: satof find states, 7 C X.
The dynamic of the model is defined by :

Iy = f(l‘t—L ut)

vi = g(xe,ay) (D

6, isthe set of parameters of the state network AV; (Vj =
1...n), where @;; = T[p1j...on;.] is the output of
the state network A; at time ¢, with the relation ¢;;, =
Pr(zy =i | 2¢—1 = j,u;), i.e theprobability of transition
from state j to state ¢, with >_7"_; ¢i;+ = 1. 49, isthe set
of parameters of output network O; (Vj = 1...n), where
n;,¢ iSthe output of the output network O; &t time ¢, with
therelation n;;: = Pr(yi+ | : = j,u:). Let usintroduce
the following variablesin the modd:

e (¢ “memory” of thesystem at timet, {; € R™:

G = ZCj,t—léoj,t fori #0

j=1

where (j; = Pr(z; = j | u}) and (o is randomly
chosenwith 377_; (j0 = 1,

e 17 : global output of thesystem at time¢, n; € IR is.
=Y Gy 2)
j=1

withtherelation n; = Pr(y; | u}), i.e. the probabil—
ity to have the expected output y; knowing the input
sequence uf,

o fy(y+;mi+) : probability density function(pdf) of out—
putswhere fy (y¢;1:¢) = Pr(y: | 2+ = i,u¢),i.e the
probability to have the expected output y; knowingthe
current input vector u; and the current state z;.

We formulate the problem of the training as a problem
of maximization of the probability function of the set of
parameters of the model on the set of training sequences.
The likelihood of input/output sequences D (Equation 3)

is, as in HMM, the probability that a finite observation
sequence could be generated by the IOHMM.

L(©,D) = Pr(Y|U,0)

P
[IPrivi" 1u1”.0) ©)
p=1

where © isthe parameter vector given by the concatenation
of {9;} et {6;}. We introduce the EM agorithm as a
iterative method to estimate the maximum of thelikelihood.

4.3. The EM algorithm

The goal of the EM dgorithm (Expectation Maximiza—
tion) [4] is to maximize the function of log—likelihood
(Equation 4) on the parameters © of the model given the
dataD.

1(©,D) =loglL(©,D) 4

To simplify thisproblem, the EM assumptionistointro—
duce anew set of parameters # known as the hidden set of
parameters. Thus, weobtainanew set of dataD, = (D, H),
called the complete set of the data, of log—likelihood func—
tion/(©, D). However, thisfunction cannot be maximized
directly because A is unknown. It was dready shown
[4] that the iterative estimation of the Iguxiliary function
@ (Equation 5), using the parameters © of the previous
iteration, maximizes((©, D..).

Q(0, ©) = Fu[l(©,D.) | D, ] ©

Computing @ corresponds to supplement the missing
data by using knowledge of the observed data and of the
previous parameters. The EM agorithmisthe following:

e Fork=1...K,where K isaloca maxima

Estimation step: computation of
Q(©,0%-1) = Ey[i(©,D.) | D,0¢ 1]

M aximization step:
0% = argmaxe Q(O©, @F—1)

Analytical maxjmizationisdoneby cancelling thepartial
derivatives 22(%.9) — o,

4.4. Training OHMM using EM

Let X betheset of states sequences, ' = (xf” (p)) with
p=1... P, thecomplete dataset is:

Dc - (U,y,X)
= (0 (»),y1"(p),x1"(p)),p=1...P



and thelikelihoodon D, is:

L(®,D,) = Pr(y,X|U,0)

P
= [IPri7 )
p=1

For convenience, we choose to omit the p variable in
order to simplify the notation. Furthermore, the conditional
dependency of the variables of the system (Equation 1) a—
lows usto write the above likelihood as:

P T,
D.) = HHP?“(.le‘t | 2¢—1,1,0)

p=1t=1

%17 (p) | u;” (p), ©)

Let usintroducethe variable z;

o 1 l‘tIi
TV 0w A
thelog-likelihoodis then:
1(©,D.) = logL(©,D,)
P T, n
= ZZZ z; tlog Pr(ye | 2 = 4,14, ©)
p=1t=14i=1

n

+ Z 2 125 1—1log Pr(l‘t =1i|xi-1=j,u, O)

i=1

However, the set of states sequences X is unknown, and
1(©,D.) cannot be maximize directly. The auxiliary func—
tion @ must be computed (Equation 5):

Q(O, &) = Ex[l.(®,

p T
ZZ ez thng Yt,mt +Z hzy thgﬁpz3t

p=1t=1i= Jj=1

D)UY,

where hij,t iscomputed using O asfollows:

hij,t = Pr(l‘t =i,x_1=] | ufv)’f)
aji—1Pijt Bie fr (Yei i)
L

and L = Pr(y? | u?l), a;, and 3;, are computed (see
[1] for details) using equations (6) and (7).

aiy = Pr(ylze=i|u))
n
= fY(Yt;”h,t)Zﬁﬁij,tOlj,t—l (6)
j=1
Bip = Pr(yip|a =iuf)

= ZfY(.'Yt+1;"7j,t.|.1)5j,t+180ji,t+1 (7)
j=1

Then L isgiven by:

L = Pr(y] |uj)
= ZPr(y{,xT =i|uf)= Z%’,T
ieF ieF

The learning algorithm is as follow: for each sequence
(uT,yT) and for each state j = 1...n, we compute ¢, ,
n;¢ then a; 4, G and hi;, (Vi € S;). Then we adjust
6; parameters of the state networks A; to maximize the
equation (8).

p Tp n
D00 I];ij,ﬂOg Pijt (8)

p=1t=14i=1j=1

n

We also adjust ¥ ; parameters of the output networks O ;
to maximize the equation (9).

P T, n
DD Ciddog fy(yeimiy) )

p=1t=14i=1

Let #;; be the set of parameters of state networks ;.
The partial derivatives of the equation (8) are given by:
N p T
8@(@, @) _ r 1 3§0ij,t
08 = L Z P ige 05

p=1t=14i€5;

wherethepartial derivatives—+ a“’ ‘2t grecomputed using clas—
sic back—propagation in the state network ;.

Let 4;, be the set of parameters of output network O;.
The partial derivatives of the equation (9) are given by:

dlog fY(.'Yt;'ﬂi,t)

Q0,0 &
Z 0y,

N
379ik: Ci,t

=1

=1t

=1

S i

¢

Z Olog fv (ye;m; t) Inji ¢
)t o] 377]zt 8ﬁlk

=3
1l
-

As before, partia derivative 24t

by back—propagation in output networks O;.
fy (y¢;mi.:) depends on the problem.

can be computed
The pdf

4.5. Applying IOHMM to gesture recognition

Wewant to di scriminate adeictic gesturefromasymbolic
gesture. Gesture paths are sequences of [A;, ¢, y:] obser—
vations, where z,;, y; are the coordinate at time ¢ and A; is
the sampling interval. Therefore, the input sizeism = 3,
and the output sizer = 1. We choosetolearny; = 1 as
output for deicticgesturesand y; = 0asoutput for symbolic
gestures.



Furthermore, we assume that the pdf of the model is
fr(yemie) = e‘%zzrzl(y”‘”l”)z, i.e. an exponential
Mean Square Error. Then, partial derivativesof theequation
(9) becomes:

r

N P TP
9Q(8, ©) A IMjie
W = ZZ Ciyt Z(yj,t - Uji,t)ﬁ

p=1lt=1 j=1

Our gesture database (Table 1) isdivided into three sub—
sets: thelearning set, the validation set and thetest set. The
learning set is used for training the IOHMM, the vadida—
tion set is used to tune the model and the test set is used
to evaluate the performance. Table 1 indicatesin the first
column the number of sequences. The second, third and
fourth columns respectively indicates the minimum number
of observations, the mean number of observations and the
maximum number of observations.

Table 1. Description of the gesture database

Deictic gestures

P Tmin Tmean Tmaz‘
Learningset 152 5 13 29
Vaidationset 76 5 14 29
Test set 57 5 15 28

Symbolic gestures

P Tmin Tmean Tmaz‘
Learningset 196 5 17 36
Velidationset 98 5 17 36
Test set 99 8 18 37

5. Results

We compare this IOHMM method to another method
based on multi—layer neural networks (MLP) with fixedin—
put size. Since the gesture database contains sequences of
variable duration, sequences are interpolated, before pre-
sentation to the neural network, in order to have the same
number of observations. We choose to interpolate al se—
guences to the mean number of observations 7),cq, = 16.
Then, theinput vector sizeism = 48for the MLP based on
interpolated gesture paths.

Classification rates on test sets for the MLP based on
interpol ated gestures and the IOHMM are presented (Table
2). Classification rate for the IOHMM is determine by
observing the globd output n; (Equation 2) over thetimet
expressed as a percentage of thelength of the sequence. The
figure 4 presents, for al sequences of both learning class,
the mean and the standard deviation of the global output.

Table 2. Classification rate with neural net-
works using interpolated gestures, and IOHMM
between 90% and 100% of the sequence

Deictic
NN using interpolated gestures  98.2%
IOHMM 97.6%

Symbolic
98.9%
98.9%
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Figure 4. Global output (7;) distribution of
IOHMM in function of time sequence

The IOHMM can discriminate a deictic gesture from a
symbolic gesture using the current observation after 60%
of the sequence is presented. It achieves the best recog—
nition rate between 90% and 100% of the sequence. In
this case, IOHMM give equivalent results to MLP based
on interpolated gestures. Nevertheless, IOHMM are more
advantageous than the MLP used. The tempora window is
not fixed a priori and the input is the current observation
vector [At7 T, yt] .

0.9

08 |
07|
06 |
05
0.4 %WHH I
03k
0 i

01 fj Illllllllllllllml Il UNTRAINED

0

O 10 20 30 40 50 60 70 80 90 100

Figure 5. Global output distribution of IOHMM
on Trained and Untrained gestures



Unfortunately, untrained gestures, i.e. the deictic and
symbolic retractation gestures, cannot be classified neither
by the output of the M LP based on interpol ated gestures nor
by the global output of the lOHMM (Figure5).
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Figure 6. “Likelihood cue” of IOHMM on
Trained and Untrained gestures

Nevertheless, it ispossibleto estimate for theIOHMM, a
“likelihood cug’ that can beused to stand out trained gestures
from untrained gestures (Figure 6). This “likelihood cue”
can be computed inaHMM way by adding to each state of
the model an observation probability of theinput u;.

6. Conclusion

A new hand gesture recognition method based on In—
put/Output Hidden Markov Models is presented. IOHMM
deal with the dynamic aspects of gestures. They have Hid—
den Markov Models properties and Neural Networks dis—
crimination efficiency. When trained gestures are encoun—
tered the classification is as powerful as the neura network
used. The IOHMM use the current observation only and
not a temporal windows fixed a priori. Furthermore, when
untrained gestures are encountered, the “likelihood cue’” is
more discriminant than the global output.

Future work is in progress to integrate the hand gesture
recognition based on IOHMM into the LISTEN based sys—
tem. The full system will integrate face detection, hand
posture recognition and hand gesture recognition.
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